Slip flow in non-circular microchannels
نویسنده
چکیده
Microscale fluid dynamics has received intensive interest due to the emergence of MicroElectro-Mechanical Systems (MEMS) technology. When the mean free path of the gas is comparable to the channel’s characteristic dimension, the continuum assumption is no longer valid and a velocity slip may occur at the duct walls. Non-circular cross sections are common channel shapes that can be produced by microfabrication. The non-circular microchannels have extensive practical applications in MEMS. Slip flow in non-circular microchannels has been examined and a simple model is proposed to predict the friction factor and Reynolds product fRe for slip flow in most non-circular microchannels. Through the selection of a characteristic length scale, the square root of crosssectional area, the effect of duct shape has been minimized. The developed model has an accuracy of 10% for most common duct shapes. The developed model may be used to predict mass flow rate and pressure distribution of slip flow in non-circular microchannels.
منابع مشابه
Slip Velocity in Flow and Heat Transfer of Non-newtonian Fluids in Microchannels
The steady-state fully-developed laminar flow of non-Newtonian power-law fluids is examined in a circular microchannel with slip boundary condition and under an imposed constant wall heat flux. Effects of slip as well as the hydrodynamic and thermal key parameters on heat transfer and entropy generation are investigated. The results reveal that increasing the Brinkman number and the flow behavi...
متن کاملTime-periodic Electroosmotic Flow of Non-newtonian Fluids in Microchannels
The alternating current electroosmotic flow of a non-Newtonian power-law fluid is studied in a circular microchannel. A numerical method is employed to solve the non-linear Poisson-Boltzmann and the momentum equations. The main parameters which affect the flow field are the flow behavior index, the dimensionless zeta potential and the dimensionless frequency. At very low dimensionless frequenci...
متن کاملNumerical Study of Non-Newtonian Flow Through Rectangular Microchannels
A numerical investigation was carried out to solve the flow dimensionless partial differential equations through rectangular microchannels. A purely viscous power law <span style="font-size: 10pt; colo...
متن کاملPULSATILE MOTION OF BLOOD IN A CIRCULAR TUBE OF VARYING CROSS-SECTION WITH SLIP FLOW
Pulsatile motion of blood in a circular tube of varying cross-section has been developed by considering slip flow at the tube wall and the blood to be a non- Newtonian biviscous incompressible fluid. The tube wall is supposed to be permeable and the fluid exchange across the wall is accounted for by prescribing the normal velocity of the fluid at the tube wall. The tangential velocity of the fl...
متن کاملA General Model for Predicting Low Reynolds Number Flow Pressure Drop in Non-Uniform Microchannels of Non-Circular Cross Section in Continuum and Slip-Flow Regimes
A general model that predicts single-phase creeping flow pressure drop in microchannels of a noncircular cross section under slip and no-slip regimes is proposed. The model accounts for gradual variations in the cross section and relates the pressure drop to geometrical parameters of the cross section, i.e., area, perimeter, and polar moment of inertia. The accuracy of the proposed model is ass...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007